Coherent Frames

نویسندگان

  • Ahmad Safapour Department of Mathematics, Faculty of Mathematical Sciences, Vali-e-Asr University of Rafsanjan, P.O.Box 518, Rafsanjan, Iran.
  • Ataollah Askari Hemmat Department of Mathematics, Faculty of Mathematics and Computer Sciences, Shahid Bahonar University of Kerman, P.O.Box 76169-133, Kerman, Iran.
  • Zohreh Yazdani Fard Department of Mathematics, Faculty of Mathematical Sciences, Vali-e-Asr University of Rafsanjan, P.O.Box 518, Rafsanjan, Iran.
چکیده مقاله:

Frames which can be generated by the action of some operators (e.g. translation, dilation, modulation, ...) on a single element $f$ in a Hilbert space, called coherent frames. In this paper, we introduce a class of continuous frames in a Hilbert space $mathcal{H}$ which is indexed by some locally compact group $G$, equipped with its left Haar measure. These frames are obtained as the orbits of a single element of Hilbert space $mathcal{H}$ under some unitary representation $pi$ of $G$ on $mathcal{H}$. It is interesting that most of important frames are coherent. We investigate canonical dual and combinations of this frames

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Performance Analysis of $\ell_1$-synthesis with Coherent Frames

Signals with sparse frame representations comprise a much more realistic model of nature than that with orthonomal bases. Studies about the signal recovery associated with such sparsity models have been one of major focuses in compressed sensing. In such settings, one important and widely used signal recovery approach is known as l1synthesis (or Basis Pursuit). We present in this article a more...

متن کامل

Compressed Sensing with coherent tight frames via $l_q$-minimization for $0<q\leq1$

Our aim of this article is to reconstruct a signal from undersampled data in the situation that the signal is sparse in terms of a tight frame. We present a condition, which is independent of the coherence of the tight frame, to guarantee accurate recovery of signals which are sparse in the tight frame, from undersampled data with minimal l1-norm of transform coefficients. This improves the res...

متن کامل

The Homogeneous Approximation Property and the Comparison Theorem for Coherent Frames

We show that the homogeneous approximation property and the comparison theorem hold for arbitrary coherent frames. This observation answers some questions about the density of frames that are not covered by the theory of Balan, Casazza, Heil, and Landau. The proofs are a variation of the method developed by Ramanathan and Steger. Frames provide redundant non-orthogonal expansions in Hilbert spa...

متن کامل

Continuous frames and g-frames

In this note‎, ‎we aim to show that several known generalizations of frames are equivalent to the continuous frame‎ ‎defined by Ali et al‎. ‎in 1993‎. ‎Indeed‎, ‎it is shown that these generalizations can be considered as an operator between two Hilbert spaces‎.

متن کامل

metric frames

dar in paian name dar ebteda mafahim topologicy baian mishavad va sepas mafahim rastehie va frames ha ra baian mikonim

tight frame approximation for multi-frames and super-frames

در این پایان نامه یک مولد برای چند قاب یا ابر قاب تولید شده تحت عمل نمایش یکانی تصویر برای گروه های شمارش پذیر گسسته بررسی خواهد شد. مثال هایی از این قاب ها چند قاب های گابور، ابرقاب های گابور و قاب هایی برای زیرفضاهای انتقال پایاست. نشان می دهیم که مولد چند قاب تنک نرمال شده (ابرقاب) یکتا وجود دارد به طوری که مینیمم فاصله را از ان دارد. همچنین مسایل مشابه برای قاب های دوگان مطرح شده و برخی ...

15 صفحه اول

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 11  شماره 1

صفحات  1- 11

تاریخ انتشار 2018-08-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023